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13.1 INTRODUCTION

This unit presents the analysis of thin and thick cylindrical shells subjected to fluid pressure.
Steam boilers, reservoirs, reactors, nuclear containers tanks, working chambers of engines,
etc. are the common examples. In this unit, stresses and strains induced in the walls of the
cylinder will be found out based on the geometry of the shell and equilibrium of the forces
involved. We shall begin by defining a thin cylinder identifying the assumptions made in the
analysis. After finding the stresses in the material of the cylinder, strains will be calculated.
Stresses in wire bound pipes will then be considered.

We shall then see the limitations for treating a shell to be thin and look for the differences in
the behaviour of a thick shell as against a thin shell. The stresses in a thick cylinder will be
obtained based on a standard method involving certain assumptions.

' Objectives
After studying this unit, you should be able to

d define a bylindrical shell and distinguish between thin and thick cylinders,
. identify the assumptions involved in the analysis of a thin cylinder,
. determine the stresses in a thin cylinder,
. find the strains and deformation in thin cylinder,
. find stresses in a wire bound pipe,
. makeout the assumptions for analysing a thick cylinder, |
. derive the standard expressions for strresses in thick shell, and
. find the stress distribution across a compound cylinder.

13.2 THIN CYLINDERS

In this section, we shall derive expressions for the stresses and strains in thin cylinders and
use them for working out related problems. '

13.2.1 Assumptions

The following assumptions are made in order to derive the expressions for the stresses and
strains in thin cylinders :

(i) The diameter of the cylinder is more than 20 times the thickness of the shell.
(i) 'The stresses are uniformly distributed through the thickness of the wall. '

(iii) The ends of the cylindrical shell are not supported from sides.
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(iv) The weight of the cylinder and that of the fluid contained inside are not taken
into account. '

(iv) The atmoshpheric pressure is taken as the reference pressure.

13.2.2 Stresses

Consider a thin seamless cylindrical shell of nominal diameter d, and shell thickness which
is containing some fi§§id at an internal pressure of p. The two ends of the cy linder are closed
with walls perpendicular to the shell (Figure 13.1). ’

Y

X \ 1

Figure 13.1

We shall consider a vertical plane YY which cuts the cylinder anywhere along the length.
We shall consider the left portion of the cylinder and see the nature and magnitude of the
internal stresses acting on the section. The stresses will be as shown in Figure 13.2.

Figure 13.2

1t can be seen that the internal stresses act over the shaded annular portion of the cylinder,

which is the wall area exposed due to the cutting the by plane Y-Y. The direction of these

internal stresses will be clearly longitudinal as the exposed area is in the vertical plane. In

addition it can also be seen that these stresses develop owing to the unbalanced horizontal

force acting on the left vertical wall of the cylinder, since the pressure acting on the curved

walls balance each other. Thus the stresses will be tensile in nature so as to maintain 4
equilibrium. The unbalanced force acting on the left wall is called the bursting force and the

force due to internal stresses acting on the wall thickness of the cylinder is called the

resisting force. ‘

We can write the expressions for the bursting and resisting forces as below.
It can be clearly seen that the bursting force is caused due to the internal pressure acting on
the vertical circular wall of nominal diameter d.

2

Hence, the bursting force = p X n_;i_

The resisting force is generated by the longitudinal tensile stress 6; acting on the vertical
area exposed, of thickness ¢ and diameter d.

* Hence, the resisting force = 6; X ndt

For equilibrium, the resisting force should be equal to the bursting force.

2
Thus, we get, o)X ndt = pX %—
or o o) = %(ti
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This internal stress is called longltudinal stress, indicating the direction in which it is acting
and its nature will be tensile.

We shall now consider a horizontal diametrical plane XX which cuts the cylindrical shell in
two halves. The stresses have been shown in Figure 13.3.
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Figure 13.3

We shall consider the equilibrium of the top portion of the cylinder. The horizontal pressure
acting on the two end walls will balance each other and hence, there will be no longitudinal
stress in the wall of the cylinder. The pressure acting on the curved surface of the shell
creates the bursting force for this free body diagram which should be balanced by the
reacting force caused by the development of internal stresses along with wall thickness of
the cylinder. Since the plane XX is horizontal, the cylinder’s wall exposed by the cutting,
will also be horizontal and it will be in the form of two rectangular strips, along with
longitudinal direction of length [ and thickness . Thus, the stress acting on this strip will be
in the vertical direction.

The pressure acting on the curved surface acts normal to the surface and hence, it will be
acting in different direction at different points along the surface. The vertical component of
the bursting force is obtained by considering an element at angle 6 to the horizontal which is
subtended by an angle d0 at the centre as shown in Figure 13.3. The length of this element
may be the total length of the cylinder itself. The revolution of the elemental force in the
vertical direction is shown in Figure 13.4.

a )
Py dg t sin®

Figure 13.4

The radial force acting on the element,
px % xdo x|,
The vertical component of the elemental force,
' xéxdexlsine
¢ p 2 ’

Hence, the total vertical component of the bursting force in the top portion of the cylindrical
shell will be _

px-d—xlsine de.

P, = ;

, d.l
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Since this resultarnt vertical component is acting upwards, the internal stress on the
horizontal strip of dimensions [ and  will be acting downwards indicating that the nature of
this stress is tensile.

The resisting force = G, XX X2,

Since the equilibrium is maintained by the action of bursting and resisting forces only, they
must be equal.

Oy xIxtx2 =pdl
- bd
Or = 5
This stress is called the hoop stress acting in the circumferential direction and it will be
tensile in nature.

It can be stated at this stage that the internal stresses in a thin cylindrical shell are acting in
the longitudinal and circumferential directions and hence they are named as longitudinal
stress and hoop stress and both are tensile in nature. Let us see some example for finding
stresses in thin cylindrical shells.

Example 13.1

A cylindrical boiler is 2.5 m in diameter and 20 mm in thickness and it carries steam
at a pressure of 1.0 N/mm?; Find the stresses in the shell.

Solution
Diameter of the shell, d = 2.5 m = 2500 mm.
Thickness of the sheli, t = 20 mm,
Internal pressure, p = 1.0 N/mm’

L pd  1.0x2500 2 .
Longitudinal stress 4 - 4x20 - 31.25 N/mm (tensile)
pd  1.0x2500 2 .
Hoop stress 2w = ax20 = 62.50 N/mm“ (tensile)
Example 13.2

A thin cylindrical vessel of 2 m diameter and 4 m length contains a particulr gas at a
pressure of 1.65 N/mm?. If the permissible tensile stress of the material of the shell is
150 N/mmz, find the minimum thickness required.

Solution

In a thin cylindrical shell, stress will be higher, since it is double that of longitudinal
stress. Hence, maximum stress is reached in the circumferential direction.

Diameter of the shell, 4 = 2 m = 2000 mm
Internal presssure, p = 1.65 N/mm?
Permissible tensile stress = 150 N/mm?

If thickness required is ¢, then

pd _
i 150
1.65 x 2000 — 150
2%t
t = 11 mm

Thus, minimum thickness required is 11 mm.

Example 13.3

A cylindrical compressed air drum is 2 m in diameter with plates 12.5 mm thick. The
efficiencies of the longitudinal (n;) and circumferential (1)) joints are 85% and 45%
respectively. If the tensile stress in the plating is to be limited to 100 MN/m?, find the
maximum safe air pressure.
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Solution Cylinders

The efficiency of the joint influences the stresses induced. For a seamless shell (with
no joints), efficiency is 100%. When the efficiency of joint is less than 100%, the
stressess are incrcased accordingly.

Hence, if 1 is the efficiency of a joint in the longitudinal direction, influencing the
hoop stress, then the stress will be given as,

pd
4txn

Oy =

Here, the diameter d = 2 m = 2000 mm.

Thickness, = 12,5 mm. ' A

Limiting tensile stress = 100 MN/m? = 100 N/mm?.

Considering the circumferential joint which influences the longitudinal stress,

—Pd_ _ 00
4t><m

px2000
4%x125%x045 100

p = 1.125 N/mm?
Similarly, considering the longitudinal joint which influences the hoop stress,

—rd_ _ 100
2t xn,

pXx2000
2x12.5x0.85 100

p = 1.063 N/mm?
Evidently, safe pressure is governed by hoop stress.

Hence, maximum safe air pressure = 1.063 N/mm?

SAQ
A closed cylindrical vessel with plane ends is made of steel plates 3 mm thick, the
interal dimensions being 600 mim aned 250 mm for length and diameter respectively.
Determine the stresses in the material of the vessel. when the internal pressure is
2.0 NAnm-™.

SAQ 2
A copper tube of 50 mminternal diameter. 1.2 m long and [.25 mm thickness has
closed ends and filled with a gas under pressure. I the safe tensile stress for copper 1s
60 N/nun~. find maximum pressure that can be applied.

SAQ 3
Abonder of 2 nvdiameter is (© be made from mild steel plates. Taking the cfticiencies
ol fongtudunal and carcunnferential joints as 75% and 50% respectively, tind the
flackness ot plate required i the mternal pressure, that will develop in the boiler s
£ NAmmy and the permissible tensile siress for miid steel is 150 N/mm?*.
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13.2.3 Strains

At any point in a thin cylindrical shell with an internal pressure p, we have obtained the
expressions for stresses along longitudinal direction and circumferential direction. In order
to obtain the strain along any direction, we have to see the state of stress at any point. In the
three mutually perpendicular directions, the stresses are as follows :

Stress along the radial direction = p (compressive)

Stresss along the circumferential direction=¢,, = pd

ot (tensile)

Stress along the longitudinal direction = or = pd (tensile)

41
The state of stress is shown in Figure 13.5.

S

Figure 13.5

e
\

These are the principal stresses acting at the point considered. However, when N is very

large making the shell thin, the radial pressure p will be very small compared to the
longitudinal and hoop stresses. Hence, this compressive stress can be neglected at any point
for the purpose of working out the strain, which is going to be still smaller. This assumption
leaves only the two tensile stresses at any point, mutyally perpendicular to each other. If E is
the Young’s Modulus of the material of the shell and v, its Poisson’s ratio, then the
expression for the strains in the two direction are obtained as follows :

Longitudinal straing; = — —v -2

ongitudinal s amel—E—vE
_pd_ pd
4tE AE
_pd o
_4tE(1 )

. Sn Ol

Hoop strain €, = 'E—VE
_pd_ pd
2tE 4tE
d
4tE(2_V)

Using these expression, we may proceed to obtain the changes in length and diameter of the
cylinder.

Change in length = longitudinal strain x original length = g;x{

However, it can be noted that since the circumference is a constant product of diameter, i.e.
C = nd, the diametrical strain will be the same as the circumferential strain.

Thus, change in diameter = Hoop stain X original diameter

Yolumetric Strain

To find the volumetric strain (ratio of change in volume to the original volume) the
expression for the volume of the cylinder will be considered.

Volume is given by,

nd?
‘V— 4xl
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2
On differentiating, we get change in volume, 8V = 544 81+ Ix2d x 8d

Hence,

Thus,

Thus, the volumetric strain is obtained as the sum of longitudinal strain and twice the hoop

v
v

nd®
4

volumetric strain, g,

R
.81+4.l.2d.6d

nd®
4

= 31 2@ = ¢+ 2¢,

€, = €l+2£

A

2v)+2pi(2—v)

Il

4tE (1

4tE (1 —2v+4-2v)

= ME o 5=av)

strains.

In terms of the pressure, diameter and thickness volumetric strain can be expressed as,

g, = ﬁ— - (5—4v)
‘We shall now see some examples for fmdmg out the strains and deformations in thin
cylindrical shells.
Example 13.4

A cylindrical shell, 0.8 m in diameter and 3 m long is havin ing 10 mm wall thickness.
If the shell is subjected to an internal pressure of 2.5 N/mm~, determine (a) change in
diameter (b) change in length and (c) change in volume. Take E =200 GPa and

Poisson’s ratio = 0 .25.

Solution

Diameter of the shell d = 0.8 m = 800 mm
Thickness of the shell, = 10 mm

Internal pressure p = 2.5 N/mm’

d
2

 25%800
T 2x10

Hoop stress, o, =
= 100 N/mm?
Longitudinal stress, o; = pd

4t

_ 2.5%x800

- ' 2
4% 10 = 50 N/mm

Hoop stram, g, = % (o, —€op = ) 1105 (100 -0.25 x 50)
X

4.375x 1074

I

1 1
—(0;~€0,) = (50-10.25x 100
E Y axa0’ )

Longitudinal strain, g;

1.25 x 107
2, +6 = 2x 4375x1074+1.25% 107

1l

Volumetric strain,

10x107% = 107
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Increase in diameter = Hoop strain X original diameter
4.375x 1074 x 800 = 0.35 mm

Increase in length = Longitudinal strain x original length
1.25% 107#x 3000 = 0.375 mm

Increase in volume = Volumetric strain X original volume

2 .
Original volume = 1‘;’— x1 = %x 800 x 3000 = 1507 x 10° mmm’

Increase in volume = 1073 x 1507 x 10° = 1507 x 10> mm®

Example 13.5

A copper tube of 50 mm diameter and 1200 mm length has a thickness of 1.2 mm

with closed ends. It is filled with water at atmospheric pressure. Find the increase in

pressure when an additional volume of 32 cc of water is pumped into the tube.

Take E for copper = 100 GPa, Poisson’s ratio = 0.3 and X for water = 2000 N/mm?.
Solutlon

The additional quantity of water pumped in accounts for the change in volume of the
shell as well as the compression of the water in it.

Hence, if p is the increase in pressure in water, then,
s= 24 _ pX30 _ 5504,

Hoop stress = ) = 2% 1.2
Longitudinal stress = Ld» px30 = 1042p
4  4x1.2

Hoop strain = = [ 6, — vo;] = %[20.83p—0.3x10.42] 177

E E

Longitudinal strain, = % [o1-Vvo,] = % [1042p-0.3%2083] = 4'—2,72

2x17.7p  4.1Tp _ 39.5Tp

E 7 E (increase)

Volumetric strain, = 2 ¢, + g =

YA

e (decrease)

Due to compression in water, its volumetric strain

‘. Additional volume pumped
= increase in volume of cylinder + decrease in volume of water

ie. 32x103 = 2Ry L Ly
E K

_ (3951, _1 xn:_dle

Tl 1x10° 2000 XXy

= 8757107 xp x% x 502 x 1200

p = 15.51 N/'mm?
SAQ4

A cylindrical shell 3 mi long and 1 min diameter has 10 num of metal thickness.
Calculate the changes in dimensions and the volume of the cylinder whein it 1s

subjected to an internal pressure of 1.3 N/nun®,

Take £ = 204 GPa and Poisson’s ratio = 0.3,
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A copper eylinder 900 mm tong, 400 mm in diameter and 6 snin thick, wiih fat ends.
is intially full of oil at atmospheric pressure. Caleulate the volunie ot t i ol which
must be pumped into the cylinder in order (o raise the pressure (0 5 abowve
atmospheric pressure. Take Young’s modulus of copper = I % 10° N/man®, Poission’s
ratioy = 0.33 and Bulk moduius of oil = 2600 N/mm”. ‘

SAQ6
A thin cvlindrical shell is subjected (o internal fluid pressure, the ends being
by (a) tlwo water light pistons altached to 2 common piston rod and (b fabyed etids.
Find the increase 1n diameter in the two cases for the following data -

ciosed

Diamcter = 200 mm; thickness = 5 min, internal pressure =3.5 N/mn™
Young's Modulus = 210 GPa and Poisson’s ratio = 0.3,

13.2.4 Wire Bound Pipes

In order to resist large internal pressures in a thin cylinder, it will be wound closely with a
wire. These are called wire bound pipes. The tension in the wire, binding the cylinder will
creale initial compressive stresses in the pipe before applying the internal pressure. Thus, on
application of the internal pressure, the cylinder and the wire jointly resisted the bursting
force. The final stresses in the wire or the cylinder will be the sum of the initial stresses due
to winding and the stresses induced due to the application of internal pressure. The relation
between the stresses in the wire and cylinder are obtained by considering the strain at the
common surface of the shell and the wire which should be the same for both.

This is illustrated in the examples given below. .

Example 13.6

A cast iron pipe of 200 mm internal diameter and 13 mm metal thickness is close1¥
wound with a layer of 5 mm diameter steel wire under a tensile stress of 40 N/mm
Calculate the stresses, set up in the pipe and the wire, if water under a pressure of
2 N/mm? is admitted into the pipe. For cast iron, Young’s Modulus is 101 GPa and
Poisson’s ratio is 0.3. For steel, Young’s Modulus is 204 GPa.

Solution

Consider 10 mm length of the pipe. Let the initial stresses in the wire and the pipe be
fw and f,, respectively, as shown in Figure 13.6.

(a) (b) Fw
Figure 13.6 : (a) Due to Wire Tension (b) Due to Internal Pressure
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For Equilibrium _
Tensile force in the wire = compressive force in the pipe

For considered length of 10 mm, two cross sections of wire will be contributing the
tensile forces since the diameter of the wire is 5 mm.

Here, f,, = 40 N/mm?

0. 7 2 40 :
2% 5 x4x5 x40_];,x2x13x10

fp = 12.8 N/mm?
After water is admitted, ,
let the stresses in wire and pipe be f,,” and fp’ respectively.

Bursting force per 10 mm length= p . d . [
=3x200x10 = 6000N

Resisting force due to pipe =f' X2x1x1
=fpy x2x13x10
= 260 f,’
. . , 10 = _»
Resisting force due to wire = fi,, X2 X 5 X 1 X5
= 78.54
Since, resisting force should be equal to bursting force, we get
78.54 f,,/ + 260 f," = 6000 ‘ 1
Longitudinal Stress = %
, _ 3x20000 2
fol = Ax13 - 11.54 N/mm
Strain in the circumferential direction for the pipe and wire should be the same.
Strain in the wire i = —-fL——3 Here, E,, = 101 x 10° N/mm?
Ey 10110
in in the pipe 2. — v /2L
Strain in the pipe gV £
Thus, fL—va—l S/ -~ 3—0.3x——11‘54 3
E E  204x10 204 x 10
1
= ——(, — 3.462
204 x 10° O )
S 1
= " —3.462)
101x10° 204 x10° 7
S = 0495f - 1.714 2)
Substituting (2) in (1), we get,
= 15.65 N/mm? (tensile)
S = 24.60 N/mm? (tensile)

Thus, Final stress in pipe = —12.08 + 15.65 = 3.57 N/mm® (tensile)
Final stress in wire= 40 + 24.60 = 64.60 N/mm? (tensile)

Example 13.7

A copper tube 38 mm external diameter and 35 mm internal diameter, is closely
wound with a steel wire of 0.8 mm diameter. Estimate the tension at which the wire
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must have been wound if an internal pressure of 2 N/mm? produces a tensile Thick and Thin

circumferential stress of 7 N/mm? in the tube. Young’s Modulus of steel is 1.6 times Cylinders
that of copper. Take Poisson’s ratio of copper is 0.3.
Solution
Let f, and f,, be the stresses in the pipe and the wire respectively, before applying the
internal pressure.
Considering for 1 mm length of pipe, we know,
Compressive force in pipe = tensile force in wire.
1 2
FpX2X15 = fi, X 08><2>< x 0.8
Jp = 04191,
Due to internal pressure alone, let the stresses be f,” and f,,". Then, we know,
Tensile force in pipe + Tensile force in wire = Bursting force
’ 1 2 _
) fpx2x1.5 +fw><08><2>< L <082 =2x35
3, +1.257£,) =70
, pd _ 2x35 _ 2
Longitudinal stress =~ Al - Axls 11.67 N/mm
Hoop strain in the pipe = strain in the wire at the junction
o e W
E, E. K
Ip 31167 _Jw
E, E. 1.6 E;
' —35=0625f
Jp —0625f, = 3.5
Solving for £, and £,
£, = 15.44 N/mm?
£,/ = 19.11 N/mm?
Final tensile stress in the pipe, 1544 - f, = 7,
Using the relation between initial stresses, f, = 8.44 N/mm? \
Tension in the wire = 20.15 N/mm?
neter 0 300 i has wall theckness o
s closely wound with a single fayer of steel wire of 3 yin i
tensile sress of 8 N/mm®. Calcalaie the stresses m the pipe and the
inlemal pressure iside the pipe is 1 N/mm?, Take E for steel =
tron = 101 GPa and Poisson’s ratio = 0.3,
R
{ o and o ‘ml' m-m oss of § g The oy
it with a single tayer of steel wire of diameter 83

undder e mw‘ Determing the minimuin ension ader which i
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Stresses in Shafts & Shells Fitie hoon tension o the ovlinder is not to exceed 50 N/mm® when the vessel is
and Thermal Stresses stbjected 1o an inemal pressure of 4 N/mmy

Tabee B tor steel s 206 GPa and for the alloy is 100 GPa and Poisson’s ratio is 0.33.

13.3 THICK CYLINDERS

In this section, we shall analyse cylindrical shells whose wall thickness is large such that
they can no longer be considered as thin. After listing the assumptions involved, we shall
derive expressions for the stresses in thick cylinders. We shall then workout related
problems.
13.3.1 Assumptions

(i) The diameter-thickness ratio is less than 20.

(ii) The material of the cylinder is homogeneous and isotropic.

(iii) Plane section perpendicular to the longitudinal axis of the cylinder remain plane
even after the application of the internal pressure. This implies that the
longitudinal strain is same at all points of the cylinder.

(iv) All fibres of the material are free to expand or contract independently without
being confined by the adjacent fibers.

13.3.2 Stresses

Figure. 13.7 shows a thick cylinder subjected to an internal pressure, P; and external
pressure P,. The internal and external radii are r; and r; respectively.

Figure 13.7 Figure 13.8

In order to derive expressions for the internal stresses, consider an annular cylinder of radius
x and radial thickness dx. On any small element of this ring, p, will be the radial stress and

f» will be the hoop stress. Considering the equilibrium of the ring similar to a thin cylinder
as shown in Figure 13.8. »

Bursting force in the vertical direction,
pxx2xxl—[(px+dpx) X2 (x +dx) xl]
Neglecting the second order terms,
Bursting force = — 21 (p, dx + x dpy)

" Resisting force = 2 X dx X I X fy
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Equating the two, 2xdxxixfy = — 2 (pydx+xdpy) ‘ Thick g;ll?“'l(;:lrl;

=

!

|
Ry

l
=
)

Thus, we get, fitpe+x—=0

Considering the assumption that their longitudinal streain is constant, we can write,

O fx Dx
——V=+vVv—> = constant
E E E
Oy

As longitudinal strain is constant, £

constant. Thus, grouping all the constant terms to the
right hand side, we can write, '
fx — Py = some constant, say 24

Subsituting for f;,

dpx
-Px— XDy = 2a

d
-X % =2p:+2a =2 (pxta)

dp,  -2(psta)
dx x
_dpx _ 2dx

or =
Deta X

Integrating, log, (p.+ a) = — 2 log, x + constant
Taking the constant as log, b,
| log, (px+a) = log. b—21log, x
log, (p.+ a) = log, b-log, @

b
log, (px+ a) = log, ;

Thus, Px+a =

b
2
or Px = b a
= ——
2
But, we know that f,, — p, = 2a, therefore, f, = p, +2a.

Thus, fi = £+ a

xl

These expressions for the radial stress and hoop stress are called Lames expressions. The
constants ¢ and b will be found from the known external pressure and the internal pressure.

13.3.3 Compound Cylinders

In order to reduce the hoop stresses developed in thick cylinders subjected to large internal

pressure, compound cylindess with one thick cylinder shrunk over the other are used. With

calculated junction pressure between the two cylinders, it is possible to reduce the hoop

stress and to make it more or less uniform over the thickness. Lame’s expressions are

applied to both the inner and outer cylinders before and after the introduction of the internal

fluid pressure, and the stresses in the two stages are superposed to obtain the final values.

When the outer cylinder is shrunk over the inner cylinder, the difference between the inner

diameter of the outer cylinder and the outer diameter of the inner cylinder determine the

shrinkage pressure developed at the junction, This differerence can be worked out as given

in subscquent paragraphs. 85

13 www.Jntufastupdates.com



Sﬂ:fl-‘fzs in 3‘;2-‘ & Shells ] et r; be the common radius at the junction after stringing on. Let Sr; be the difference
and Therm esses between the outer radius of inner cylinder and r; and Sr; be the difference between r; and
inner radius of the outer cylinder .

If Sr be the difference in the radii before shrinking on, then we have,
4 Sr = 8ri+5n;

For the inner tube, the circumferential strains at the common radius r; is given by

Srq 1 b :
==t EZ5al+ vp: (compressive)
z E[ [ 17 ] ! }

whre p; is the junction pressure due to shrinkage. Similarly, for the outer cylinder,

Sry 1 v o, ‘ .
T = E[(,ZHI ]+ vp,} (tensile)

Sr Sri+Srmm 1 (¥ b
Thus, — == = —+a’ —_ —+a
A EH'Z } ['?' H

i.e. the original difference of radii at the junction will be given by the algebraic difference
between the hoop stresses for the tubes at the junction multiplied by the junction radius
divided by E.

Now, we shall see some examples of problems relating to thick cylinders.
Example 13.8

The internal and external diameters of a thick hollow cylinder are 80 mm and

120 mm respectively. It is subjected to an external pressure of 40 N/mm? and an
internal pressure of 120 N/mm?. Calculate the circumferential stress at the external
and internal surfaces and determine the radial and circumferential stresses at the’

mean radius.
Solution
14
We know that Dx = ; -a
Thus, at x=40, p,=120N/mm*, and

at x=60, py=40N/mm?

Substituting these values, we get,

120 = ——a and
40
b
40 = g.?—- a
On solving, we get, a = 24 and b = 230400. \
Circumferential stress is givenby, f; = % +a v
X
Thus, at x=40, fi = 23;):20 0 +24 = 168 N/mm?
at x=60, f, = 2304200+24 = 88 N/mm?
60
At the mean radius, i.e. 90—5@2 = 50 mm,
Radial stress = 2350;;) 0_ 24 = 68.16 N/mmz, and
230400 | 24 = 116.16 N/mm?

" Circumferential stress = 3
. 50

86
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Examble 13.9

A thick cylinder of 0.5 m external diameter and 0.4 m internal diameter is subjected
1multaneously to internal and external pressures. If the internal pressure is

25 MN/m? and the hoop stress at the inside of the cylinder is 45 MN/m? (tensile),

determine the intensity of the external pressure.

Solution
Using Lame’s expression for hoop stress and radial stress, which are

fH = ;+a and
pe=2-a
T2
For the internal surface, i.e. x = 0.2 m,
b
25 = ——-
0.2
45 = —b3+a
0.2

On solving, we get, b = 1.4 and a =10.
Thus, the intensity of external pressure at x = 0.25 will be,

1.4
Px = -10
* 0252

= 12.4 MN/m?

Example 13.10

The cylinder of a hydraulic press has an internal diameter of 0.3 m and is to be
designed to w1thstand a pressure of 10 MN/m? without the material being stressed
over 20 MN/m?. Determine the thickness of the metal and the hoop stress on the
outer side of the cylinder.

- Sotution
Internal radius = 073 = 0.15m.
» Let the external radius be R.
Hoop stress will be maximum at the inner side.
Thus, 20 = b S +a
0.15
Radial pressure at the inner side = 10 MN/m?.
Therefore 10 = b 7=
0.15

On solving, we get, b =0.3375and a = 5.
For exteral pressure = 0, we get,

R =026m.
Thus, metal thickness =0.26 -0.15=0.11 m= 110 mm
Finally, hoop stress at the outside of the cylinder will be,

- ‘ _0.3375
= 5+ 5
0.26
= 10.00 MN/m?

15 www.Jntufastupdates.com
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Stresses in Shafts & Shells Example 13.11
and Thermal Stresses
A thick cylinder of steel having an internal diameter of 100 mm and external

diameter of 200 mm is subjected to an internal pressure of 80 N/mm?. Find the
maximuin stress induced in the material and the change in the external diameter.

Take Young’s modulus =2 x 105 N/mm? and Poisson’s ratio = 0.3.
Solution
Using Lames expressions for the inside and outside pressure, we have,
80 = L _ a and
50
_ b
1002
On solving, we get, b = 266666.67 and a = 26.667.
Thus, the maximum stress (Hoop stress at the inner surface of the cylinder)
b 266666.67
2T s
133.33 N/mm?
To find the strain at the outer surface,

Hoop stress at surface = 26—61606% +26.667 = 53.33 N/mm?®

a

+ 26.667

Il

Since, pressure outside is zero,

Hoop strain = 53.33 = 53'335 = 2.666 x 10~
E 2x10 )
Thus, increse in external diameter = 2.666 x 10_4 x 200 = 0.053 mm.
Example 13.12

A compound tube is made by shrinking one tube on another, the final dimension
being, 80 mm internal diameter, 160 mm external diameter ang 120 mm being the
diameter at the junction.

If the radial pressure at the junction due to shrinking is 15 N/mm?, find the greatest
tensile and compressive stresses induced in the material of the cylinder. What
difference must there be in the external diameter of the inner cylinder and the internal
diameter of the outer cylinder before shrinking ?

Take Young’s modulus as 200 GPa.

Solution ;
For outer cylinder,
at x=60, p,=15, and
at x=80, p,=0.
by
We get, 15 = E_ a; and
by
0=——5- a
802
On solving, we get, b1 = 8647000 and a; = %5
Circumferential stress at the inner sutface,
£ = 864000 + 135
Foaxe0r T

)t

53.6 N/'mm” (tensile)
88
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For inner cylinder, Thick and Thin
Y Cylinders

at x=60, p,=15, and

at x=40, p,=0.
We get, , 15 = ~bi2—a2 ‘and
60
—_ b2’
= 4—1?—

On solving, we get, b, =~43200 and a,=-27.
Circumferential stress at the inner surface,
43200

= — +(-27
S 402 +(=27)

= — 54 N/mm’ (compressive)
Circumferential stress at the junction,
_ 43200
fe= 60 +(-27)
= —39 N/mm? (compressive)

Required difference in diameter,
Junction diameter (Algebraic difference between
= E X hoop stresses at the junction)

120
% 10 5

(53.6 + 39) = 0.0556 mm

SAQY
A steel pipe 100 mm external diameter and 75 mm intemai dignee
an internal pressure of 14 MN/m™ and an external pressure of 5.3 BN/

_ distribution of hoop stress across the wall of the pipe.

i\ KR ia!

SAQ 10
A steed eylinder 160 mm external diameter and 120 mm internal diameter has s ghers
cylinder 200 mm external diameter shrank on it. [f the miaximum tensile stress
induced in the outer cylinder is 80 N/mm*. Find the radial compressive stress
between the cylinders. Determine the circumferential stress at inner and outer
diameters of both cylinders. Find also the initial differcnce m the conumon diame e
of the two cylinders required. ‘

A S T/ 2
Take Young's modulus = 2 > 107 N/anm®,

13.4 SUMMARY

In this unit, we have seen the assumptions made in the analysis of thin cylinders The hoop

stress and iongitudinal stress for a thin cylinders have been found to be 1;7 and Ijl_(ti

respectively. The expressions for hoop strain, circumferential strain and the volumetric
strain were derived. Examples for finding stresses, strains and deformations in the thin
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Stresses in Shafts & Shells  cylinders were worked out. Stresses in wire bound pipes were then found through examples.

and Thermal Stresses Lame’s expressions for the stresses in a thick cylindrical shell were derived after
considering the assumptions involved. Compound cylinders involving shrinkage pressure at
the junction were considered. Expression to find the initial difference in junction radii was
deduced. Examples have been worked out in illustrating these expressions.

13.5 ANSWERS TO SAQs

SAQ1
200 N/mm?; 100 N/mm?.
SAQ2
0.6 N/mm?.
SAQ3
13.33 mm.
SAQ4
0.208 mm, 0.147 mm, 1095 x 103 mm’.
SAQS _
520 x 103 mm®,
SAQ6
0.067 mm, 0.057 mm.
SAQ7
12.51 N/mm?; 31.8 N/mm?.
SAQS
153.8 N/mm”.
SAQ9
24.86 MN/m% 16.36 MN/m’.
SAQ 10
17.56 N/mm?; 62.4 N/mm?; 80.3 N/mm?; 0.114 mm.

90
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Chapter

8 THICK CYLINDRICAL

SHELLS

8.1 INTRODUCTION:

When the thickness of the shell is comparably large, the cylindrical shell is called a thick
cylinder. Thick cylinders are used to withstand high pressures. In case of thin walled cylindrical shell
(d/t > 20) subjected to internal pressure, the stress is assumed uniform throughout the thickness of
the wall. This assumption is not accepted when the thickness of shell is not small, and is comparable
to the diameter of the shell. In case of thick shells, the stress is not uniform, but varies with
maximum at inner surface to a minimum at outer surface.

In case of thick shells the following assumption are made.
1. Material is homogeneous and isotropic, and stresses are within proportional limit.

2. The longitudinal strain at any point in the thickness of the metal is constant and is
independent of position. This means that sections perpendicular to the longitudinal axis
remain plane before and after the pressure applied. '

8.2 STRESSES IN A THICK CYLINDRICAL SHELL-LAME’S EQUATIONS :

Consider a thick cylinder of unit length with outer and inner radii r; and r, respectively.
Consider an elementary ring of the shell of radius, r and thickness dr. '

p+3p

CIRCUMFERENTIAL
STRAIN ( oh

LONGITUDINAL E

STRAIN( ] _

PL p
. R c RADIAL STRAIN ( E)
(a) (b)
| Fig. 8.1
(Chapter-8) —_—
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Thick Cylindrical Shells 303
Considering the equilibrium of thin cylindrical element subject to internal pressure (p),
Bursting force at AB = p.2r- (p + 8p) 2 (r + &r)
Resisting force, 2F = 20}.0r
Equating bursting force to resisting force
2Uh.8r= 2r.p - (p + 8p) 2(r + &r)
Neglecting small quantities,

0,-0r = —pdr—1dp
Uh='P_£§Tp s i)
_ _ 5(rép)
a or

At any point, in the section of elementary ring, the three principal stresses are :
1. Radial (compressive) stress, p

2. Circumferential (tensile) stress, o},
3. Longitudinal (tensile) stress, PL

Longitudinal tensile stress is assumed to be uniform across the entire thickness of the shell
and given by the equation.

p.ig_ pig

L= n(rlz—r;_?) = 1.'1‘?—r;32

It may be assumed that longitudinal strain (e) is constant, which means that cross-sections
remain plane after straining. Longitudinal strain at any point in‘the ring,

PL_OSh , P

© T E "mE " mE
1 [ _(Uh‘D]:I
= EI:F‘L i

Assuming stress in axial direction (p; ) is uniform over the cross section, and for given material

of shell E and i are constant. Therefore (o, — p) must be constant.

Let o, -p= 2awhere ais constant. . . (i)
From relations (i) and (ii)
rép
p+2a=-p- =
Sp _ _2(p+a)
or r
o _ 2
(p+a) ~ r

(Chapter-8)
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304 : ,- Mechanics of Solids
Integrating,
log,(p+a) = -2log,r + log, b

Where log, b= constant of integration

b
Pk a= ;Q‘

ie., p = % _a ... (i)
r

and from equations (ii) and (iii)

— b (-
o= 7 +a e (V)

The above relations for radial stress and circumferential stress are called Lame’s equations.

The consfants a and b can be evaluated for.given conditions ;

Let radial pressure inside is p;, reducing to-atmospheric pressure on the outside,

p. = E'—a
i rg

5, m i
5]

Solving the above equations for a and b

2 2 2
T N ¢
- -~ ________2F’112 and b = -———pél %
o -r3) (f —13)

The max. circumferential stress on the inside surface

b pef +15)
Oyi= m Fa =5 g2
197 (f -13)

Consider pressures are p; and p, at outer and inner surface i.e., at radius ryandr, respectively.

_b b
pz—-rzz-—a an pl—-—;li-—a

. (P2 —py e pars —pyif
T 2 2 and a= —2—?—
(6 —r7) (ff —r5)

(Chapter-8) - : s
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ms.lz

A 300 mm internal diameter water pipe 75 mm thick carries water under a pressure of
5N/mm2- Calculate the maximum and minimum intensities of hoop stress.

Solution :

Internal pressure at r, (150 mm), p; = 6 NJmm? at r, (150 + 75 mm), po =0

oo e 6x1502 o
(f -x5) ~ 2252 _1502
. pef _ 6x225°x1507
an T (£ -18) ~  (225%-150%) ’
b 243000
Max. hoop stress, 6, .. = 2 + a 1502 + 4.8

Min. hoop stress, oy, .1

= 15.6 N/mm?Z Ans.

b 243000
= 5 = + 4.8
Z 27T o082

9.6 N/mm?Z Ans.

Example 8.2 :

- Athick cylinder of internal diameter 160 mm is subjected to an internal pressure 40 N/mm?.
If the allowable stress in the material is 120 N/mmz, Find the thickness required.

Solution :
Internal pressure, p;
Allowable stress, o,

Internal diameter, d,,

)

Il

[JNTUH - May/June 2012]

40 N/mm?
120 N/mm?

160 mm ,

1—g-(l=8l3mm

pi.r2 40%x80% 256000
2 -t2) = (£-80%) " (if —80%) Fig. 8.2

b 40xiEx80% 25600017
(f -F) ~ (f-80%) " (f -80%)

22

(Chapter-8)
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306 Mechanics of Soljg,
_ b
Gh,max - r22 +a
_ 2560001 256000
~ 80%(rf -80%) ' (rf - 80%)
i 40f 256000
T (1 -6400)  (xf -6400)
120(r,2 - 6400) = 40r, + 256000
80r;2 = 1024000
o= %390- = 113.14 mm
Thickness, t = =1y
= 113.14 - 80 = 33.14 mm Ans.
Example 8.3 :

A thick cylindrical pipe of outside diameter 300 mm and internal diameter of 200 mm is
subjected to an internal fluid pressure of 20 N/mm? and external fluid pressure of 5 N/mm?. Determine
the maximum hoop stress developed and draw the variation of hoop stress and radial stress across

the thickness. Indicate values at every 25 mm interval.

Solution :
d; _ 300 dy 200
e grei g TR, R
Pp = 20 N/mmZ, p; = 5 N/mm?
_ ppf-pif  20x1002 - 51502
R s 2 (150 —1002)
and b = P2 ;Pl)flz 5 (20-5)1502x1002 -
(i -15) 1502 1002 - </0000
. b A
Max. hoop stress, o, 5 +a
2
_ 270000 3
T 1002 Y/S 34 N/mm* Ans.

23
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Thick Cylindrical Shells 307

Variation of hoop stress :

- 270000
o, = 126mm, o = 5~ + 7 = 24.28 N/mm?
125
| 270000
r' = 150 mm, Omin = 1507 + 7 = 19 N/mm?2

Variation of radial stress :

r = 100mm, p = 20N/mm? (given)

r =125mm, p = —-a

270000
1252

~7 = 10.28 N/mm?

“r = 150mm, p = 5N/mm?(given)

[+
o
£
3 % 34
3, 3
; 3, &
P E
E
0 =
0 &
G 20
0
O o
!...
1 :
iy o N £
w X 3
; ; 3 . : i
*a- - 100 125 150
3 g —>»RADIUS, mm
n [%] .
Fig. 8.3

~Example 8.4 :

The cylinder of a hydraulic ram is 60 mm inter diameter. Find the thickness to withstand an
internal pressure of 40 N/mm?, if the maximum tensile stress-is limited to 60 N/mm? and the

maximum shear stress to 50 N/mm®. ;. [AMIE]
Solution : -

Op oy = 60N/mm?

p, = 40N/mm?,

o = %Q = 30 mm

(Chapter-8)
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Considering the maximum tensile stress :

The maximum tensile stress is the hoop stress at the inside.

il
pi(rl 'r-rz)

°n = (-
40(c? +30?)
- 0= T(Z 302
60(r,2-900) = 40 (r,” + 900) ,

60r,2-54000 = 40r;? + 36000

, _ 36000 +54000

n° = 20 = 4500
Fig. 8.4
r; = /4500 = 67.08 mm
Consider the maximum shear stress :
Maximum shear stress is half the stress difference,
_ (hoop stress — radial stress)
Tmax = 2
g
_ lop=(m)] _ lon+pl _ Pett
2 2 -5
Minus sign for radial stress indicates a compression stress.
_ I?’i-l'l2
% 40x r12
- (1 -30%)
50 ;245000 = 40r,?
45000
rf= —p— = 4500
r; = /4500 = 67.08 mm same as before.
“Thickness, t = (r; - r) = (67.08 — 30) = 37.08 mm Ans.
(Chapter-8) - —
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Thick Cylindrical Shells 309
3.3 COMPOUND CYLINDERS :

When the cylindrical shell is subjected to internal pressure the hoop stress across the section
is not uniform.

b
Let hoopstress = o, = —3 +a
X
The maximum hoop stress occurs at the inner
circumference and the hoop stress decreases towards the

outer circumference.
So the maximum pressure inside the shell is limited .

corresponding to the condition that hoop stress at the inner
circumference reaches the permissible value.

The compound tube as shown in Fig. 8.5 is subjected
to internal pressure, and both the inner and outer tubes
will be subjected to hoop tensile stress due to the internal
pressure alone.

Fig. 8.5

Adding the internal stresses caused while shrinking and the-stresses due to pressure alone the
final hoop stresses in both the tubes can be defermined. By this arrangement the hoop stresses
throughout the metal will be nearly uniform.

Let 1q and r, = outer and inner radii of the compound tube
3 = radius at the junction of the two tubes.

p. = radial pressure intensity at the junction of the two tubes after shrinking
the outer tubes over the inner tube.

as per Lame’s relation.

For outer tube

by
px=-;?-—a1 and 6, ="y + 3y

At x =11;p;=0

b

ik, = =

= <% 0 _ . s (13

by

and at X = Y3.Pj = x2'a1 wex (2}

The constants a4 an::l'.}b:L are determined from equations (15 and (2).

Lame’s relation for inner tube :

by 2
p, = -;z——azandcx=;‘2- + ag

(Chapter-8)
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by
" = Ay = O e (3
il )
and at X =135 P =P
by
pj = ;2‘ - ay ws ()

by selving equations (3) and (4) b, and a, can be determined.

Now, the hoop stresses for outer and innertubes can be determined.

Note : If compound tube is subjected to an internal pressure p;, the inner and outer tubes
will together be considered as one thick shell.

Example 8.5 :

A compound cylinder has inner radius 200 mm, radius at common surface 260 mm and
outer radius is 300 mm. Initial pressure at common surface is 6 N/mmz.- What are the final hoop
stresses after a fluid is admitted at a pressure of 80 N/mm? ? Sketch the variation of hoop and radial
stresses. [INTUH - May/June, 2012]
Solution :

For outer cylinder :

'External radius (r,) 300 mm

Internal radius (r) = 260 mm

For internal cylinder :

| Interal radius (r;) = 200 mm
| |

Radial pressure due to shrinkage at junction (p)= 6 N/m2
Fluid pressure in the compound cylinder (p) = 80 N/mmZ2

1. Stresses due to shrinking in the outer and inner cylinder before the fluid pressure
is admitted :

+ Lame's equations for outer cylinders

b - |
P = 2 -2 (1)
b;

(Chapter-8)
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3002 "2 =0 .. (3)

atx=r=250mmpx=p=6N!mm2

by
(2602 —21 =0

oo (4)

from eqn. (3) & (4);  ((4)-(3))
b, (1478 x 107°-1.11x 1075) =6
b, = 1.626 x 10°, and
a, = 18.07

Substituting b; and a; values is eqn. (2)

6
LY

» X

The stresses at the outer and inner surface of the outer cylinder is obtained by substituting

1.626x10° - y
at x= 300mm, O3p9 = W + 18.07 = 36.14 N/mm*“(T)

1.626x10° 5
and x = 260 mm, Op60 = ~ 2607 + 18.07 = 42.12 N/mm?(T)

b. Lame’s equation for the inner cylinder :

b -
Py = ;? =8y wir ()
bg
and o, = ;‘2’ + a, . | : ... (6)

at ; = 200;p, = 0 (There is fio fluid under pressure)

bg
0 = ‘2007 ~ 22 - (7)

at r, = 200mm, p,=6N/mm’
b2

O (260)2 ~ 22 _ e ... (8)
(Chapter-8)
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From eqns. (7) and (8), (8) = (7)

by (1.479 x 10°-2.5 x 107°) = 6
b, = -587659.16
and a, = —14.69
By substituting the value of b2 and a, in eqn. (6)

587659.16
6 = ——7— —14.69

X

Hence, the hoop stress ‘for the inner cylinder is obtained by substituting x = 260 mm
and 200 mm

-587659.16
= -23.38 N/mm? (comp)
-587659.16

= —29.38 N/mm? (comp)

- 2. Stresses due to fluid pressure alone :

‘When the fluid under pressure is admitted inside the compound cylinder, the two cylinders
together will be considered as one single unit. The hoop stresses are calculated by Lame’s equations

B
B ™ 3 A .. (9)
B
%™ gy T .. (10) -
at x =200mm p = p==80Nmm?
B ;
80 = (200)2 - A (11}
at x = 260 mm p, =0
B

From equation (12) & (11) [(12)-(11)]
B[1.479 x 10~°-2.5 x 10~ %] = - 80
B = 7835453.44
A = 115.909

(Chapter-8)
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Thick Cyl'indrical Shells : 313
Substituting (A) and (B) values in eqn. (11)

7.835x%10°
= e —F + 115.909

Hence, the hoop stresses due to internal fluid pressure alone are given by,

7.835x106 .
9200 = (2002  * 115.909 = 311.784 N/mm? (T)

7.835x10°

%260 = " (gg0) T 115:909 = 23181 N/mm? (T)
7.835x10°

G300 = W + 115.909

= 202.97 N/mm? (T)

The resultant stresses will be the algebraic sum of the initial stresses due to shrinking and
those due to internal fluid pressure. '

Innercylinder Fyyy = —29.38 + 311.784 = 282.404 N/mm?
Fpgy = —23.38 +231.81 = 208.43 N/mm?
Outercylinder Fygy = 42.12 + 231.81 = 273.93 N/mm?

Fago = 36.14 +202.97 = 239.11 N/mm?*

Example 8.6 :

A comﬁound cylinder formed by shrinking one tube on to another, is subjected to an internal
pressure of 60 N/mmz. Before the fluid is admitted, the internal and external diameter of compound

cylinder are 120 mm and 200 mm and diameter at the junction is 160 mm. If after shrinking on, the
radial pressure at the common surface is 8.0 MPa. Calculate the final stress setup by the section.

[INTU H - May/June, 2012]

Solution :

For outer cylinder :

200

External radius (rp) = > = 100 mm
160

Internal radius (r) = N 80 mm

(Chapter-8)
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For internal cylinder :

120
Internal radius (r;) = —— = 60 mm

2
Radial pressure due to shrinkage at junction = 8 N/mm?
Fluid pressure in the compound cylinder = 60 N/mm?

1. Stress due to shrinking in the outer and inner cylinder before the fluid pressure
is admitted : :

Lame’s equations for out cylinder :

b )
Px = X_:lz iy ‘ s}
by :
d = 9 " “ew
at x = 100mm,p, =0
b
0 = 2 - sew
<2 —a - | (3),
x = 80, Py = 8
b1 ’ :
g =35
L2 T a _ e (4)

From eqns. (3) & (4) [(4) -(3)]
by [1:5625 x 1074-1 x 1074 = 8
b, = 142222.22

a; = 14.22
Substituting the values for b, and a, in eqn. 4,
142222.22
o, = — .3  +1422
- 142222.22
S0 = (00p  *14:22 = 28.44 Nimm? (T)
142222.22
O = (gop * 1422 =36.44 Nmm? (1)
b. Lame’s equation for the inner cylinder :
b - -
P = 2 2% . (8
bo
and o, = _o tag

- e ' _ w10} _

(Chapter-8)
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at 80 mm ; p, =8 N/mm?
at 60mm;p = O N/mm? (There is no fluid under pressure)
by
0 = GO ~ 22 i k)
8 = —25
- &7 -2 - (8)

From equations (7) and (8), [(8) - (7)]
by [1.5625 x 10~%-2.77 x 10-4] = 8
by = —66252.50
ap, = —18.352
Substituting the values of ag and b, in equation (6)

_ 66252.59

G
X x2

—18.352

Hoop stress at x = 80 mm, Ogg = - 28.704 N/mm? (comp)
at x = 60 mm, o = - 36.755 N/mm? (comp)
2. Stresses due to fluid pressure alone : |

When the fluid under pressure is admitted inside the compound cylinder, the two cylinders
together will be considered as one single unit. The hoop stresses are calculated by Lame’s equations,

B

P = ?-A
B
and cx-—,";§‘+A

Atx = 60mm, p,_= p=60Nmm*

B .
_ — _ B : )
80 — (60)2 A i ) - -
at x =.80 mm, p, = 0 N/mm?
B
£ _ B
0 = Tgop ~A |
(Chapter-8)
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From equations (11) and (12), [(12) - (11)]
B [1.5625 x 10-4-2.778 x 10~ = - 80
B = 658285.71
A = 102.824
Substituting the values ofA and B in equation (12)

71
T
* X

Hoop stress due to internal fluid pressure alone are given by

658285.71 )
o100 = ~(oop  *+102:824 = 168.652 N/mm
658285.71
og =~ gop + 102.824 =205.681 N/mm?
= 285.68 N/mm?

Ogp =
The resultant stress :

" Inner cylinder :

Fgo = —36.755 + 285.68 = 248.925 N/mm®

Fgy = —28.704 + 205.681 = 176.977 N/mm?
Outer cylinder :

Fgo = 36.44 + 205681 = 242.121 N/mm®

Fipo = 2844 + 168.652 = 197.065 N/mm®
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d
+ Pressure vessels with n < 20 are called thick shells.

 Longitudinal strain at any point,

1 c
g = = P]_—"—h*+—E-:|
ElL m m

_1[ _(on-p
- gl -()

b
+ Radial stress, p = - a, and
r

Hoop (circumferential) stress

where a and b are constants, depend on given conditions.

When pressure p = P at inside, and
= 0 at outside
e 22
pj-r2 [T
a = 73 3z andb= pélg
(4 —15) (e —15)

If py and Py are the pressures at outer and inner surface,

\ .
Pors —pyi (p2 —py) (. 15)
2_2, andb= 7 2
(4" -12) (rf —17)

(Chapter-8)
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