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13.1 INTRODUCTION 
This unit presents the analysis of thin and thick cylindrical shells subjected to fluid pressure. 
Steam boilers, reservoirs, reactors, nuclear containers tanks, working chambers of engines, 
etc. are the common examples. In this unit, stresses and strains induced in the walls of the 
cylinder will be found out based on the geometry of the shell and equilibrium of the forces 
involved. We shall begin by defining a thin cylinder identifying the assumptions made in the 
analysis. After finding the stresses in the material of the cylinder, strains will be calculated. 
stresses in wire bound pipes will then be considered. 

We shall then see the limitations for treating a shell to be thin and look for the differences in 
the behaviour of a thick shell as against a thin shell. The stresses in a thick cylinder will be 
obtained based on a standard method involving certain assumptions. 

Objectives 
After studying this unit, you should be able to 

define a 'cylindrical shell and distinguish between thin and thick cylinders, 

identify the assumptions involved in the analysis of a thin cylinder, 

determine the stresses in a thin cylinder, 

find the strains and deformation in thin cylinder, 

find stresses in a wire bound pipe, 

makeout the assumptions for analysing a thick cylinder, 

derive the standard expressions for strresses in thick shell, and 

find the stress distribution amoss a compound cylinder. 

13.2 THIN CYLINDERS 

In this section, we shall derive expressions for the stresses and strains in thin cylinders and 
use them for working out related problems. 

13.2.1 Assumptions 
The following assumptions are made in order to derive the expressions for the stresses and 
strains in thin cylinders : 

(i) The diameter of the cylinder is more than 20 times the thickness of the shell. 

(ii) The stresses are uniformly distributed through the thickness of the wall. 

(iii) The ends of the cylindrical shell are not supported from sides. 
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Stresses in Shafts & Shells 
and Thermal Stresses 

(iv) The weight of the cylinder and that of the fluid contained inside are not taken 
into account. I 

(iv) The atmoshpheric pressure is taken as the reference pressure. 1 
13.2.2 Stresses 
Consider a thin seamless cylindrical shell of nominal diameter d, and shell thickness which 
is containing some f;Yid at an internal pressure of p. The two ends of the cy linder are closed 
with walls perpendicular to the shell (Figure 13.1). 

I 
v I 

Wgure 13.1 

We shall consider a vertical plane YY which cuts the cylinder anywhere along the length. 
We shall consider the left portion of the cylinder and see the nature and magnitude of the 
intemal stresses acting on the section. The stresses will be as shown in Figure 13.2. 

Figure 13.2 

It can be seen that the intemal stresses act over the shaded annular portion of the cylinder, 
which is the wall area exposed due to the cutting the by plane Y-Y: The direction of these 
intemal stresses will be clearly longitudinal as the exposed area is in the vertical plane. In 
addition it can also be seen that these stresses develop owing to the unbalanced horizontal 
force acting on the left vertical wall of the cylinder, &nce the pressure acting on the curved 
walls balance each other. Thus the stresses will be tensile in nature so as to maintain 
equilibrium. The unbalanced force acting on the left wall is called the bursting force and the 
force due to internal stresses acting on the wall thickness of the cylinder is called the 
resisting force. 

We can write the expressions for the bursting and resisting forces as below. 

It can be clearly seen that the bursting force is caused due to the internal pressure acting on 
the vertical circular wall of nominal diameter d. 

nd2 
Hence, the bursting force = p x 7 
The resisting force is generated by the longitudinal tensile stress a1 acting on the vertical 
area exposed, of thickness t and diameter d. 

Hence, the resisting force = a1 x ndt 

For equilibrium, the resisting force should be equal to the bursting force. 

Thus, we get, 
zd2 

o1xndt = p x -  
4 

nr m,  - P! 
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This intemal stress is called longltudinal stress, indicating the direction in which it is acting 
and its nature will be tensile. 

We shall now consider a horizontal diametrical plane X X  which cuts the cylindrical shell in 
two halves. The stresses have been shown in Figure 13.3. 

We shall consider the equilibrium of the top portion of the cylinder. The horizontal pressure 
acting on the two end walls will balance each other and hence, there will be no longitudinal 
stress in the wal of the cylinder. The pressure acting on the curved surface of the shell 
creates the bursting force for this free body diagram which should be balanced by the 
reacting force caused by the development of intemal stresses along with wall thickness of 
the cylinder. Since the plane X X  is horizontal, the cylinder's wall exposed by the cutting, 
will also be horizontal and it will be in the form of two rectangular strips, along with 
longitudinal direction of length 1 and thickness t. Thus, the stress acting on this strip will be 
in the vertical direction. 

The pressure acting on the curved surface acts normal to the surface and hence, it will be 
acting in different direction at different points along the surface. The vertical component of 
the bursting force is obtained by considering an element at angle 0 to the horizontal which is 
subtended by an angle de at the centre as shown in Figure 13.3. The length of this element 
may be the total length of the cylinder itself. The revolution of the elemental force in the 
vertical direction is shown in Figure 13.4. 

Figure 13.4 

The radial force acting on the element, 

I The vertical component of the elemental force, 

Hence, the total vertical component of the bursting force in the tofi portion of the cylindrical 
shell will be 

Thick and Thin 
Cylinders 
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StressesinShafts& Since this resultbit vertical component is acting upwards, the internal stress on the 
and Thermal Stresses horizontal strip of dimensions 1 and t will be acting downwards indicating that the nature of 

this stress is tensile. 

The resisting force = a, x 1 x t x 2. 

Since the equilibrium is maintained by the action of bursting and resisting forces only, they 
must be ecpal. 

a , x l x t x 2  = p d l  

This stress is called the hoop stress acting in the circumferential direction and it will be 
tensile in nature. 

It can be stated at this stage that the internal stresses in a thin cylindrical shell are acting in 
the longitudinal and circumferential directions and hence they are named as longitudinal 
stress and hoop stress and both are tensile in nature. Let us see some example for finding 
stresses in thin cylindrical shells. 

Example 13.1 

A cylindrical boiler is 2.5 m in diameter and 20 mm in thickness and it carries steam 
at a pressure of 1.0 N/mm2: Find the stresses in the shell. 

Solution 

Diameter of the shell, d  = 2.5 m = 2500 mm. 

Thickness of the shell, t = 20 rnm. 

Internal pressure, p  = 1.0 N/mm2 

a@! - 1'0x2500 = 31.25 N1-2 :. Longitudinal stress 4t - 
4 x 20 

(tensile) 

:. Hoop stress - l@ - 2500 = 62.50 N/mm2 (tensile) 
2t 2 x 2 0  

Example 13.2 

A thin cylindrical vessel of 2 m diameter and 4 m length contains a particulr gas at a 
pressure of 1.65 N/mm2. If the permissible tensile stress of the material of the shell is 
150 N/rnm2, find the minimum thickness required. 

Solution 

1n a thin cylindrical shell, stress will be higher, since it is double that of longitudinal 
stress. Hence, maximum stress is reached in the circumferential direction. 

Diameter of the shell, d  = 2 m = 2000 mm 

Internal presssure, p  = 1.65 N/mm2 

Permissible tensile stress = 150 N/mm2 

If thickness required is t, then 

Thus, minimum thickness required is 11 mm. 
! 

Example 13.3 i I 
I 

A cylindrical compressed air drum is 2 m in diameter with plates 12.5 mm thick. The 
efficiencies of the longitudinal (ql) and circumferential (qc) joints are 85% and 45% 
respectively. If the tensile stress in the plating is to be limited to 100 M N / ~ ~ ,  find the 
maximum safe air pressure. 
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Solution 

The efficiency of the joint influences the stresses induced. For a seamless shell (with 
no joints), efficiency is 100%. When the efficiency of joint is less than 100%. the 
stressess are increased accordingly. 

Hence, if q is the efficiency of a joint in the longitudinal direction, influencing the 
hoop stress, then the stress will be given as, 

Thick and Thin 
Cylinders 

Here, the diameter d = 2 m = 2000 mm. 

Thickness, t = 12.5 mm. 

Limiting tensile stress = 100 M N / ~ ~  = 100 N/mm2. 

Considering the circumferential joint which influences the longitudinal stress, 

Similarly, considering the longitudinal joint which influences the hoop stress, 

Evidently, safe pressure is governed by hoop stress. 

Hence, maximum safe air pressure = 1.063 N/mm2 

.I closctl cylindrical \~esscl will1 pliine ends is ~liadc of sreel plali:~ 3 mrn thick. ltic 
i~~(ct.ll;~l C ~ ~ I ~ Y ~ \ I I S ~ O I I S  i?t'i~i$ 000 111111 ;111~1 750 11~11 i'or Ic11g111 ilnil di;~ltleler respccti\x!ly. 
l)c~r.c~~iiinc,~lic slrcsscs in the n1;rlcrial 01' (he vesscl. when llre internal pressure is 
2. ( '  N!lnni-. 

S,\Q 2 
;I ~ i ) p l > c ~ .  lul>r: 01'50 111111 i i lL t ' ~ .~ i i~ l  cli;~~lri\lcr. 1 .2 111 I O I I ~  ;11id 1 .25 111111 thick11~'ss I I ~ I S  
<.Ic>si6<l crl!s ;totl lillccl will) ;l gas ulitlcr Iwessurc. If llic sal'c ltnsilc slress for copper is 
A!) NilnlnL. l'i11tl n l ; ~ x i n ~ u ~ n  prcssurc Ihal c;ul bs rrppliucl. 
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Stresses in Shafts & Shells 
and Thermal Stresses 

13.2.3 Strains 
At any point in a thin cylindrical shell with an internal pressure p, we have obtained the 
expressions for stresses along longitudinal diiection and circumferential direction. In order 
to obtain the strain along any direction, we have to see the state of stress at any point. In the 
three mutually perpendicular directions, the stresses are as follows : 

Stress along the radial direction = p  (compressive) 

Stresss along the circumferential direction = on = @ (tensile) 
2t 

Stress along the longitudinal direction = or = @ (tensile) 
4t 

The state of stress is shown in Figure 13.5. 

1 These are the principal stresses acting at the point considered. However, when - d .  is very 
t 

large making the shell thin, the radial pressurep will be very small compared to the 
longitudinal and hoop stresses. Hence, this compressive stress can be neglected at any point 
for the purpose of working out the strain, which is going to be still smaller. This assumption 
leaves only the two tensile stresses at any point, mutually perpendicular to each other. If E is 
the Young's Modulus of the material of the shell and v, its Poisson's ratio, then the 
expression for the strains in the two direction are obtained as follows : 

(31 o n  Longitudinal strain &I = - - v - 
E E 

o n  0 1  
Hoop strain E =--v- 

" E  E 

Using these expression, we may proceed to obtain the changes in length and diameter of the 
cylinder. 

Change in length = longitudinal strain x original length = EI x 1 

However, it can be noted that since the circumference is a constant product of diameter, i.e. 
C = nd, the diametrical strain will be the same as the circumferential strain. 

Thus, change in diameter = Hoop stain x original diameter 

Volumetric Strain 

To find the volumetric strain (ratio of change in volume to the original volume) the 
expression for the volume of the cylinder will be considered. 

Volume is given by, 
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On differentiating, we get change in volume, 6V = @261+ x 1 x 2d x M 
4 

6V Hence, volumetric strain, E, = - v 

Thus, 

Thus, the volumetric strain is obtained as the sum of longitudinal strain and twice the hoop 
strains. 
In terms of the pressure, diameter and thichess volumetric strain can be expressed as, 

We shall now see some examples for finding out the strains and deformations in thin 
cylindrical shells. 

Example 13.4 

A cylindrical shell, 0.8 m in diameter and 3 m long is havin 10 mm wall thichess. 8 If the shell is subjected to an internal pressure of 2.5 N/mm , determine (a) change in 
diameter (b) change in length and (c) change in volume. Take E = 200 GPa and 
Poisson's ratio = 0.25. 

Solution 

Diameter of the' shell d = 0.8 m = 800 mm 
Thickness of the shell, t = 10 mm 

Internal pressure p = 2.5 N/mm 2 

HOOP stress, a, = pd 
2t 

Longitudinal stress, a1 = pd 
4t 

= 4.375 x lo4 

1 - Longitudinal strain, = - (01 - &on) = ---- 
E (50 - 0.25 x 100) 

2 x lo5 

= 1.25 x lo4 

Volumetric strain, = 2&, + &l = 2 x 4.375 x lo4 + 1.25 x lo4 

Thick and Thin 
Cylinders 
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Stressesin Shafts &Sheus . Increase in diameter = Hoop strain x original diameter 
and Thermal Stresses 

Increase in length = Longitudinal strain x original length 

Increase in volume = Volumetric strain x original volume 

nd2 n Original volume = - x I = - x 800~  x 3000 = 1507 x lo6 mm3 
4 4 

Increase in volume = x 1507 x lo6 = 1507 x lo3 mm3 

Example 13.5 

A copper tube of 50 mm diameter and 1200 mm length has a thickness of 1.2 mm 
with closed ends. It is filled with water at atmospheric pressure. Find the increase in 
pressure when an additional volume of 32 cc of water is pumped into the tube. 
Take E for copper = 100 GPa, Poisson's ratio = 0.3 and K for water = 2000 N/mm2. 

The additional quantity of water pumped in accounts for the change in volume of the 
shell as well as the compression of the water in it. 

Hence, if p is the increase in pressure in water, then, 

x 50 Hmp stress = = e-- = 20.83 p 
2t 2 x 1.2 

x 50. Longitudinal stress = @ = = 1 0 . 4 2 ~  
4t 4x1.2 

1 1 4 .17~ 
Longitudinal strain, = - [ a1 - van ] = - [ 10.42 p - 0.3 x 20.83 ] = 

E E E 

Volumetric strain, = 2 En + El = 
2 x 17.7~ + 4.17~ 39.57~ - 

E E E (increase) 

Due to compression in water, its volumetric strain (decrease) K 
:. Additional volume pumped 

= increase in volume of cylinder + decrease in volume of water 

i.e. 3 2 x 1 0 ~  = = X V  + 
E 

39.57 nd2 x p x - x l  =[;..+- 2000) 4 

:. p =  15.51Nlmm2 

SAQ 4 
A cylirldricnl shell 3 111 lor~g arid 1 11-1 irk di;i:nctc[. has 1 E i  rnnl of' ulclal I l i i c k ~ l ~ ' ~ ~  
Calculate the chanyt:s in dirncr~sions r ~ r ~ l  rile vol!l!nc (.il'Ihe cylii!dcs ~ i l ~ z i ~  i f  is 
s~lbicctcd t o  an irilernnr prixssl.lrc 01 1 5 N J I ~ ~ I I I - .  
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A Ci>l?l'cS c:yli~ltler nlrrl lo~lg,  300 11l111 in diameter and 6 ;rlrn thi<:i\. ,i.rlh i:!;ll !'nd?. 
is ini! ially full oI' oil at iiln~osplieric prcssurc. Calculale Ulc volunie cri tii ,:  i:il *t?,!!i~i: 
must h t  purnped into the cylinder in order to raise tlie pressure to 5 al?or;l;> 

5 ;~tn~osplier.ic pressurc, 'r.&e Young's nlodulus of copper = 1 x 10' N!!nm'. !'r~issitrn's 
~ar io  = 0.37 ;~ntl Bulk moclulus ol' oil r 2600 Nilr~m". 

1 S:\Q 6 
A 1ii111 i~ I l~idr~~ii l  b l ~ ~ l l  IS but)~cclc(I 10 L I I L C I ~ ; ~ ~  1Iu~d pressure, the en[;\ I l < i ! i p 1  ::.r~%.tii 
t>\ ( : I )  Lrv\'o water 11gl11 p~\looc nltachetl t o  ;l corlillion pirlorl r ( ~ 1  and I 1 . 1  '!.li1<\'.i , ' t i l l ,  

I F ~n : l  ihc IIIC~;;L\C 1!1 cl~anicler 111 the tnro case, fc:r the IoI!~?~I 'LIIs !  J;11:: 

13.2.4 Wire Bound Pipes 
In order to resist large internal pressures in a thin cylinder, it will be wound closely with a 
wire. These are called wire bound pipes. The tension in the wire, binding the cylinder will 
create initial compressive stresses in the pipe before applying the internal pressure. Thus, on 
application of the internal pressure, the cylinder and the wire jointly resisted the bursting 
force. The final stresses in the wire or the cylinder will be the sum of the initial stresses due 
to winding and the stresses induced due to the application of internal pressure. The relation 
between the stresses in the wire and cylinder are obtained by considering the strain at the 
common sGrface of the shell and the wire which should be the same for both. 

This is illustrated in the examples given below. 

Example 13.6 

t A cast iron pipe of 200 nlm internal diameter and 13 mrn metal thickness is close1 Y wound with a layer of 5 mm diameter steel wire under a tensile stress of 40 Nlmm . 
Calculate the stresses, set up in the pipe and the wire, if water under a pressure of 
2 ~ l r n m ~  is admitted into the pipe. For cast iron, Young's Modulus is 101 GPa and 
Poisson's ratio is 0.3. For steel, Young's Modulus is 204 GPa. 

Solution 

Consider 10 mm length of the pipe. Let the initial stresses in the wire and the pipe be 
f, and fp respectively, as shown in Figure 13.6. 

Thick and Thin 
Cylinders 

Figure 13.6 : (a) Due to Wire Tension (b) Due to Internal Pressure 
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Stresses in Shafts & Shells 
and Thermal Stresses 

For Equilihdum 

Tensile force in the wire = compressive force in the pipe 

For considered length of 10 rnrn, two cross sections of wire will be contributing the 
tensile forces since the diameter of the wire is 5 mm. 

Here, f, = 40 ~ / m r n ~  

After water is admitted, 

let the stresses in wire and pipe be f,' and fpf respectively. 

Bursting force per 10 mm length = p . d . I  

= 3 x 200 x 10 = 6000 N 

Resisting force due to pipe = fpf x 2 x t x 1 

= f p ' x 2 x 1 3 x 1 0  

= 260 fp' 

10 x 2 Resisting force due to wire = f,' x 2 x - x - x 5 
5 4 

= 78.54 f,' 

Since, resisting force should be equal to bursting force, we get 

78.54 fw' + 260 fPf = 6000 

Longitudinal Stress = Pd 
4t 

Strain in the circumferential direction for the pipe and wire should be the same. 

fw ' Strain in the wire - = fw' Here, E, = 101 x lo3 N/rnm2 
EW 101 x lo3 

s t r m  in the pipe fh- v @  
E E 

Thus, fpl -- f p i  - , fp' V -  - - 0.3 x 11.54 

E E 2 w x 1 0 3  204 lo3 

fw' - 1 orp' - 3.462) - 
101 x lo3 204 x 10 

fw' = 0.495 fPf - 1.714 

Substituting (2)  in (I ) ,  we get, 

fpl = 15.65 N/mrn2 (tensile) 

fWf = 24.60 N/rnm2 (tensile) 

Thus, Final stress in pipe = -12.08 + 15.65 = 3.57 N/mm2 (tensile) 

Final stress in wire= 40 + 24.60 = 64.60 N/mm2 (tensile) 

Example 13.7 

A copper tube 38 mm external diameter and 35 mm internal diameter, is closely 
wound with a steel wire of 0.8 mm diameter. Estimate the tension at which the wire 
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must have been wound if an internal pressure of 2 N/mm2 produces a tensile 
circumferential stress of 7 N/mm2 in the tube. Young's Modulus of steel is 1.6 times 
that of copper. Take Poisson's ratio of copper is 0.3. 

Solution 

Let fp and fw be the stresses in the pipe and the wire respectively, before applying the 
internal pressure. 

Considering for 1 mm length of pipe, we know, 

Compressive force in pipe = tensile force in wire. 

fq = 0.419 fw 

Due to internal pressure alone, let the stresses be fp' and f,'. Then, we know, 

Tensile force in pipe + Tensile force in wire = Bursting force 

pd - 2 x 3 5  - 11.67N/mm2 Longitudinal stress - - - - 
4t 4x1.5 

Hoop strain in the pipe = strain in the wire at the junction 

fe fw' f b-"-=- 
1 Ec EC E,? 

fp' - 3.5 = 0.625 fw' 

fp' - 0.625 fw' = 3.5 

Solving for fp' and f,', 

f; = 15.44 N J ~ ~ Z  
fw' = 19.11 N/mm2 

:. Final tensile stress in the pipe, 15.44 - fp = 7, 

Using the relation between initial stresses, fp = 8.44 N/mm2 

:. Tension in the wire = 20.15 N/mm2 

Thick and Thin 
Cylinders 
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13.3 THICK CYLINDERS 

In this section, we shall analyse cylindrical shells whose wall thickness is large such that 
they can no longer be considered as thin. After listing the assumptions involved, we shall 
derive expressions for the stresses in thick cylinders. We shall then workout related 
problems. 

13.3.1 Assumptions 
(i) The diameter-thickness ratio is less than 20. 

(ii) The material of the cylinder is homogeneous and isotropic. 

(iii) Plane section perpendicular to the longitudinal axis of the cylinder remain plane 
even after the application of the internal pressure. This implies that the 
longitudinal strain is same at all points of the cylinder. 

(iv) All fibres of the material are free to expand or contract independently without 
being confined by the adjacent fibers. 

13.3.2 Stresses 
Figure. 13.7 shows a thick cylinder subjected to an internal pressure, PI and external 
pressure P2. The internal and external radii are r,  and 1-2 respectively. 

Figure 13.7 Figure 13.8 

I 

i 

In order to derive expressions for the internal stresses, consider an annular cylinder of radius 
x and radial thickness dx. On any small element of this ring, px will be the radial stress and 
fx will be the hoop stress. Considering the equilibrium of the ring similar to a thin cylinder 
as shown in Figure 13.8. 

. I .  . i. Stresses in Shafts & Shells i 7  \ r ; i ,  I!(); ;!i l i : l l h i o i l  i i i  lI\t.\ i-ylinder i s  not c > ~ c c r ~ l  S!! !".c'!nln~' when the l-essc! is  
and Thermal Stresses :,ii?li.;'Livf io all Ilj;::nl;ri pressure i;: 4 N!m:ll-. 

?,ti,,(: !f :i!r' slccl ns 3ii; GPra and tor Llle alio:; is 1OO GPt! m(l Poisson's ratio i h  il3.7. 

84 

Bursting force in the vertical direction, 

Neglecting the second order terms, 

Bursting force = - 21 (p, dx + x dp,) 

Resisting force = 2 x dx x 1 x fx 
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Equating the two, 2 x d x x 1 x f x  = - 2 1 h d x - c x d p . , )  

Thus, we get, 

Considering the assumption that their longitudinal streain is constant, we can write, 

01 fx Px - - v - + v -  = constant 
E E E 

01 
As longitudinal strain is constant, - constant. Thus, grouping all the constant terms to the E 
right hand side, we can write, 

fx - px = some constant, say 2a 

Subsituting. for f,, 

Integrating, log, (p, + a )  = - 2  log, x + constant 

Taking the constant as log, b, 

log, (px + a) = log, b - 2  log, x 

log, (p,  + a) = log, b - loge 3 
b 

log, @, + a )  = loge 2 

Thus, 
b 

p x + a  = - 
1 

A. 

But, we know that fx - p x  = 2 2 ,  therefore, fx = PX + 2a. 

Thus, 
b 

fx = $ + a  

These expressions for the radial stress and hoop stress are called Lames expressions. The 
constants a  and b will be found from the known external pressure and the internal pressure. 

13.3.3 Compound Cylinders 
In order to reduce the hoop stresses developed in thick cylinders subjected to large internal 
pressure, compound cylinders with one thick cylinder shrunk over the other are used. With 
calculated junction pressure between the two cylinders, it is possible to reduce the hoop 
stress and to make it more or less uniform over the thickness. Lame's expressions are 
applied to both the inner and outer cylinders before and after the introduction of the internal 
fluid pressure, and the stresses in the two stages are superposed to obtain the final values. 
When the outer cylinder is shrunk over the inner cylinder, the difference between the inner 
diameter of the outer cylinder and the outer diameter of the inner cylinder determine the 
shrinkage pressure developed at the junction. This differerence can be worked out as given 
in subscquent paragraphs. 

Thick and Thin 
Cylinders 
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StmsesinShafts&Shens Let r, be the common radius at the junction after stringing on. Let Srl be the difference 
and Thermal Stresses 

between the outer radius of inner cylinder and rj and Sr2 be the difference between r, and 
inner radius of the outer cylinder . 
If Sr be the difference in the radii before shrinking on, then we have, 

I For the inner tube, the circumferential strains at the common radius r, is given by 

3 = [ (5 + a ) + v (compressive) 

whre p, is the junction pressure due to shrinkage. Similarly, for the outer cylinder, 

i.e. the original difference of radii at the junction will be given by the algebraic difference 
between the hoop stresses for the tubes at the junction multiplied by the junction radius 
divided by E. 

Now, we shall see some examples of problems relating to thick cylinders. 

Example 13.8 

The internal and external diameters of a thick hollow cylinder are 80 mm and 
120 mm respectively. It is subjected to an external pressure of 40 N/rnrn2 and an 
internal pressure of 120 N/mm2. Calculate the circumferential stress at the external 
and internal surfaces and determine the radial and circumferential stresses at the 
mean radius. 

Solution 

We know that 

Thus, at x = 40, px = 120 Nlmm2, and 

at x = 60, px = 40 N/mrn2. 

Substituting these values, we get, 

b 120 = --a and 
402 

On solving, we get, a = 24 and b = 230400. 

b Circumferential stress is given by, .f, = + a - ,  
X 

Thus, at x = 40, .f, = 7 230400 + 24 = 168 N/mm2 
40 

At the mean radius, i.e. = 50 m, 
2 

230400 
24 = 68.1 6 N/mm2, and Radial stress = ------ - 

so2 

Circumferential stress = - 230400 + 24 = 1 16.16 N/mm2. 
so2 
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Examole 13.9 

A thick cylinder of 0.5 m external diameter and 0.4 m internal diameter is subjected 
simultaneously to internal and external pressures. If the internal pressure is 
25 MNlrn2 and the hoop stress at the inside of the cylinder is 45 MN/m2 (tensile), 
determine the intensity of the external pressure. 

Solution 

Using Lame's expression for hoop stress and radial stress, which are 

, - b + a  and 
" - 2  

For the internal surface, i.e. x = 0.2 m, 

On solving, we get, b = 1.4 and a =lo. 

Thus, the intensity of external pressure at x = 0.25 will be, 

= 12.4 MN/m2 

Example 13.10 

The cylinder of a hydraulic press has an internal diameter of 0.3 m and is to be 
designed to withstand a pressure of 10 MN/m2 without the material being stressed 
over 20 MN/m2. Detennine the thickness of the metal and the hoop stress on the 
outer side of the cylinder. 

Sotution 

0.3 Internal radius = - = 0.15 m. 
2 

Let the external radius be R. 

Hoop stress will be maximum at the inner side. 

Radial pressure at the inner side = 10 MN/m2. 

Therefore b 10 = -- a 
0 .15~  

Thick and Thin 
Cylinders 

On solving, we get, b = 0.3375 and a = 5. 

For external pressure = 0, we get, 

Thus, metal thickness = 0.26 - 0.15 = 0.1 1 m = 110 mm 

Finally, hoop stress at the outside of the cylinder will be, 
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Stresses in Shafts & Shells Example 13-11 
and Thermal Stresses 

A thick cylinder of steel having an internal diameter of 100 mm and external 
diameter of 200 mm is subjected to an internal pressure of 80 N/mm2. Find the 
maximum stress induced in the material and the change in the external diameter 

Take Young's modulus = 2 x 105 Nlmm2 and Poisson's ratio = 0.3. 

Solution 

Using Lames expressions for the inside and outside pressure, we have, 

b 
80 = - - a  and 

502 

On solving, we get, b = 266666.67 and a  = 26.667. 

Thus, the maximum stress (Hoop stress at the inner surface of the cylinder) 

To find the strain at the outer surface, 

Hoou stress at surface = 266666.67 + 26.667 = 53.33 Nlmm2 

Since, pressure outside is zero, 

53'33 - 53'33 = 2.666 
104 Hoop strain = - - 

E 2 ~ 1 0 ~  

Thus, increse in external diameter = 2.666 x lo4 x 200 = 0.053 mm. 

Example 13.12 

A compound tube is made by shrinking one tube on another, the final dimension 
being, 80 mm internal diameter, 160 mm external diameter and 120 mm being the 
diameter at the junction. 

If the radial pressure at the junction due to shrinking is 15 N/mm2, find the greatest 
tensile and compressive stresses induced in the material of the cylinder. What 
difference must there be in the external diameter of the inner cylinder and the internal 
diameter of the outer cylinder before shrinking ? 

Take Young's modulus as 200 GPa. 

Solution 

For outer cylinder, 

at x =  60, px= 15, and 

We get, 

864000 On solving, we get, bl = --- 
135 

7 
and a1 = --. 

7 

Circumferential stress at the inner surface, 

= 53.6 N/mm2 (tensile) 

16 www.Jntufastupdates.com



For inner cylinder, 

at x=60, px= 15, and 

at x = 40, px = 0. 

We get, 

On solving, we get, b2 = - 43200 and a2 = - 27. 

Circumferential stress at the inner surface, 

= - 54 N/mm2 (compressive) 

Circumferential stress at tbe junction, 

= - 39 N/mm2 (compressive) 

Required difference in diameter, 

- Junction diameter (Algebraic difference between - 
E hoop stresses at the junction) 

SXQ 9 
i4 sfcLi:l pipe 100 11k111 cxtcrrlal [ii:~!~~i.;ti:r ;,~;tj 75 ! ~ I ~ I I  i t ~ ~ , < ~ : ~ j ~ i ~ i  t!~zljiit:.(,r i:; ,<:!:-.;I'!.: . 

XI i ~ i l c r ~ ~ i ~ l  ~WCSSUI.C! ~ t '  14 ~MNlt11- i!ild i\jI ~ ? Y ~ C F I I ~ I I  ~ Y S S U ~ C  * % I  ? 5 %t.:'di::i . ?:!t::i ' 

tlislribulion ol' 11oop stress across tlio wal! c~!f pipe. 

A stccl cyli~kdcr 160 111111 cxtcr~ial dia111clcr ;l~lil 120 rnni i11lcrnal di:lnictcr hi17 ;r;~i l i i i : : :  

zyli~ltlcr 200 111111 cx lc r~~a l  dianlc(cr slirun$ 011 I( .  11 llie I I I ; I X I I ~ I J ~ I  tcllrllc s l rc~b 
iliducctl in lhe oulcr cylindcr is XO Nlnlnl*. Fintl the racii;il co~nprussive stress 
hctwecll the cylinders. Dzterllli~ie llic circunil'cren~iill slress ilt i1;nC.r i~ncl oi1ICr 
clianiutcrs of both cylilldcrs. Find also thc iriil.i;il difl'erc~lce n! thc c'oliimc~!i tli:~f!ii'i;:.f 
0 1 '  (111' two cylilldcrs required. 

5 
Tickc Y(:ul~g's ~x~c)rii~lus = 2 v. l i)' Ninln~". 

13.4 SUMMARY 

In this unit, we have seen the assumptions made in the analysis of thin cylinders. The hoop 

stress and longitudinal stress for a thin cylinders have been found to be and pd 
4t 

respectively. The expressions for hoop strain, circumferential strain and the volumetric 
strain were derived. Examples for finding stresses, strains and deformations in the thin 

Thick and Thin 
Cylinders 1 
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Stresses in Shafts & Shells 
andThermal Stresses 

cylinders were worked out. Stresses in wire bound pipes were then found through examples. 
Lame's expression* for the stresses in a thick cylindrical shell were derived after 
considering the assumptions involved. Compound cylinders involving shrinkage pressure at 
the junction were considered. Expression to find the initial difference in junction radii was 
deduced. Examples have been worked out in illustrating these expressions. 

13.5 ANSWERS TO SAQs 

SAQ 1 

200 NIIIII~~; 100 N I ~ ~ .  

SAQ 2 

0.6 N/mm2. 

SAQ 3 

13.33 mm. 

SAQ 4 

0.208 mm, 0.147 mm, 1095 x 103 mm3. 

SAQ 5 

520 x 103 mm3. 

SAQ 6 

0.067 mm, 0.057 mm. 

SAQ 7 

12.51 N/mm2; 31.8 N/mm2. 

SAQ 8 

153.8 N/mm2. 

SAQ 9 

24.86 MN/m2; 16.36 MN/m2. 

SAQ 10 

17.56 N/mm2; 62.4 N/mm2; 80.3 N/mm2; 0.1 14 mm. 
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